数据结构与算法(十七)斐波那契(黄金分割法)查找算法

过去的,未来的
2020-08-04 / 0 评论 / 0 点赞 / 603 阅读 / 2,065 字 / 正在检测是否收录...
温馨提示:
本文最后更新于 2020-08-04,若内容或图片失效,请留言反馈。部分素材来自网络,若不小心影响到您的利益,请联系我们删除。

斐波那契(黄金分割法)查找基本介绍:

黄金分割点是指把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意向不大的效果。
斐波那契数列 {1, 1, 2, 3, 5, 8, 13, 21, 34, 55 } 发现斐波那契数列的两个相邻数 的比例,无限接近 黄金分割值0.618。

斐波那契(黄金分割法)查找算法

斐波那契(黄金分割法)原理:

斐波那契查找原理与前两种相似,仅仅 改变了中间结点(mid)的位置,mid不 再是中间或插值得到,而是位于黄金分 割点附近,即mid=low+F(k-1)-1 (F代表斐波那契数列),如下图所示
image.png

对F(k-1)-1的理解:
  • 由斐波那契数列 F[k]=F[k-1]+F[k-2] 的性质,可以得到 (F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1 。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1

  • 类似的,每一子段也可以用相同的方式分割

  • 但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。

代码实现

public class FibonacciSearch {
	public static int maxSize = 20;
	public static void main(String[] args) {
		int [] arr = {1,8, 10, 89, 1000, 1234};

		System.out.println("index=" + fibSearch(arr, 8));// 0

	}

	//因为后面我们mid=low+F(k-1)-1,需要使用到斐波那契数列,因此我们需要先获取到一个斐波那契数列
	//非递归方法得到一个斐波那契数列
	public static int[] fib() {
		int[] f = new int[maxSize];
		f[0] = 1;
		f[1] = 1;
		for (int i = 2; i < maxSize; i++) {
			f[i] = f[i - 1] + f[i - 2];
		}
		return f;
	}

	//编写斐波那契查找算法
	//使用非递归的方式编写算法
	/**
	 *
	 * @param a  数组
	 * @param key 我们需要查找的关键码(值)
	 * @return 返回对应的下标,如果没有-1
	 */
	public static int fibSearch(int[] a, int key) {
		int low = 0;
		int high = a.length - 1;
		int k = 0; //表示斐波那契分割数值的下标
		int mid = 0; //存放mid值
		int f[] = fib(); //获取到斐波那契数列
		//获取到斐波那契分割数值的下标
		while(high > f[k] - 1) {
			k++;
		}
		//因为 f[k] 值 可能大于 a 的 长度,因此我们需要使用Arrays类,构造一个新的数组,并指向temp[]
		//不足的部分会使用0填充
		int[] temp = Arrays.copyOf(a, f[k]);
		//实际上需求使用a数组最后的数填充 temp
		//举例:
		//temp = {1,8, 10, 89, 1000, 1234, 0, 0}  => {1,8, 10, 89, 1000, 1234, 1234, 1234,}
		for(int i = high + 1; i < temp.length; i++) {
			temp[i] = a[high];
		}

		// 使用while来循环处理,找到我们的数 key
		while (low <= high) { // 只要这个条件满足,就可以找
			mid = low + f[k - 1] - 1;
			if(key < temp[mid]) { //我们应该继续向数组的前面查找(左边)
				high = mid - 1;
				//为甚是 k--
				//说明
				//1. 全部元素 = 前面的元素 + 后边元素
				//2. f[k] = f[k-1] + f[k-2]
				//因为 前面有 f[k-1]个元素,所以可以继续拆分 f[k-1] = f[k-2] + f[k-3]
				//即 在 f[k-1] 的前面继续查找 k--
				//即下次循环 mid = f[k-1-1]-1
				k--;
			} else if ( key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
				low = mid + 1;
				//为什么是k -=2
				//说明
				//1. 全部元素 = 前面的元素 + 后边元素
				//2. f[k] = f[k-1] + f[k-2]
				//3. 因为后面我们有f[k-2] 所以可以继续拆分 f[k-1] = f[k-3] + f[k-4]
				//4. 即在f[k-2] 的前面进行查找 k -=2
				//5. 即下次循环 mid = f[k - 1 - 2] - 1
				k -= 2;
			} else { //找到
				//需要确定,返回的是哪个下标
				if(mid <= high) {
					return mid;
				} else {
					return high;
				}
			}
		}
		return -1;
	}
}

0

评论区